graphgrove

A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

View the Project on GitHub nmonath/graphgrove

Install

Linux wheels available (python >=3.6) on pypi:

pip install graphgrove

Building from source:

conda create -n gg python=3.8
conda activate gg
pip install numpy
make

To build your own wheel:

conda create -n gg python=3.8
conda activate gg
pip install numpy
make
pip install build
python -m build --wheel
# which can be used as:
# pip install --force dist/graphgrove-0.0.1-cp37-cp37m-linux_x86_64.whl 

Examples

Toy examples of clustering, DAG-structured clustering, and nearest neighbor search are available.

At a high level, incremental clustering can be done as:

import graphgrove as gg
k = 5
num_rounds = 50
thresholds = np.geomspace(1.0, 0.001, num_rounds).astype(np.float32)
scc = gg.vec_scc.Cosine_SCC(k=k, num_rounds=num_rounds, thresholds=thresholds, index_name='cosine_sgtree', cores=cores, verbosity=0)
# data_batches - generator of numpy matrices mini-batch-size by dim
for batch in data_batches:
    scc.partial_fit(batch)

Incremental nearest neighbor search can be done as:

import graphgrove as gg
k=5
cores=4
tree = gg.graph_builder.Cosine_SGTree(k=k, cores=cores)
# data_batches - generator of numpy matrices mini-batch-size by dim
for batch in data_batches:
    tree.insert(batch) # or tree.insert_and_knn(batch) 

Algorithms Implemented

Clustering:

Nearest Neighbor Search: