
Greedy Algorithm

-1 +1 +4 +5

-1 +1 +4 +5
Dataset

Ground truth.

+4

-1 +1
l'

y p

l

+5

-1

+1 +4

Greedy insertion.

-1
+1

+4 +5 DP(T) = 1.0
DP(T) = 0.75

Ari Kobren*, Nicholas Monath*, Akshay Krishnamurthy, Andrew McCallum
University of Massachusetts Amherst

A Hierarchical Algorithm for Extreme Clustering

Extreme Clustering

Cluster Trees

PERCH
Purity Enhancing Rotations for Cluster Hierarchies

def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)
 balanceRotate(v,T)
 collapse(v,T)

Masking-Based Rotations

Theorem 1. If X is separated w.r.t. C?,the greedy
algorithm with masking-based rotations constructs
a cluster tree with dendrogram purity 1.0.

Conclusion
• PERCH scales well with both N and K
• Also performant on traditional clustering

problems
• Provably optimal on separated data

paper: http://dl.acm.org/citation.cfm?id=3098079

[Few, 2014]

[Heer et al, 2014]

Clustering: partitioning a dataset into a set of disjoint subsets

Extreme Clustering: large N and large K

~14M images, ~21k classes

Analysis, visualization, image
segmentation, representation

Dendrogram Purity

Speed Experiments

Definition 1 (Masking). A node v with sibling v0 and
aunt a in a tree T is masked if there exists a point
x 2 lvs(v) such that max

y2lvs(v0)
kx� yk > min

z2lvs(a)
kx� zk.

Separated Data

Holistic measure of tree's clustering quality

Accuracy Experiments
• Compared 10 algorithms on 9

datasets.
• Evaluate pairwise F1 and

dendrogram purity.

0 200 400 600 800 1000 1200
Running Time (s)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
en

dr
og

ra
m

Pu
ri

ty

P-1-L=10k

P-1-L=Inf

P-3-L=Inf

P-5-L=Inf

BI-5
BI-25

BI-50
BR-5

BR-10

BR-25

BR-50

H-1
H-5

H-10 H-100

ILSVRC12 (50k): Running Time vs. Dendrogram Purity

Perch
Birch (incremental)
Birch (rebuild)
HKMeans

0 10000 20000 30000 40000 50000
0

5

10

15

20

Ti
m

e
pe

rp
oi

nt
(m

s)
/

lo
g2

(n
)

BAL
NO BAL

0 10000 20000 30000 40000 50000
Number of Data Points (n)

0

50

100

150

200

M
ax

de
pt

h

Insert Speed per Point (ILSVRC 50K)

• PERCH-BC: Beam width, collapse threshold
• BIRCH: branching factor
• HKMeans: number of iterations per level.

Beam, Balance & Collapsing
• For additional speed invoke balance-based rotations
• Collapse mode enforces maximum leaf constraint
• Use approximate nearest neighbor search with beam

PERCH + balance & collapse provably optimal.

• Insert/search scales with log(n)
• Number of clusters unnecessary a priori
• Online updates and construction
• Represents multiple alternative clusterings

Collapsed node

Forgotten node

Found by Beam search only
Found by A* search only

Found by both A* & Beam

True Nearest Neighbor

Balance rotation

xi

Compare the performance of PERCH and other incremental and
online methods as a function of two adversarial arrival orders:

Sorted:

Round
Robin:

[Arbelaez et al, 2011]

Impact of Balance

• PERCH produces purer trees in less time
• Others algorithms are faster but low purity

Adversarial Orderings

Bounding Boxes for Efficient Computation
Nearest Neighbor Search & Rotation Check

Alleviate masking via masking-based rotations

n = nearestNeigh(xi, T)
 v = split(n)

 —————————————— recursiveRotate(v,T) —————————————

• Balance rotations improve running time
by reducing tree depth.

code: http://github.com/iesl/xcluster

http://dl.acm.org/citation.cfm?id=3098079
http://github.com/iesl/xcluster

